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Abstract

Variational principle is used to solve some flat crack problems in three-dimensional elasticity. In the formulation, the

strain energy is evaluated by multiplying the crack opening displacement (COD) by the boundary traction. The

boundary traction is related to the COD function by a differential–integral representation. By using an integration by

part, the portion of the strain energy of the potential functional can be expressed by a repeated integral. In the integral

all the integrated functions are non-singular. Letting the functional be minimum, the solution is obtained. In the actual

solution, the COD function is represented by a shape function family in which several undetermined coefficients are

involved. Using the variational principle, the coefficients are obtained. Several numerical examples are given with the

stress intensity factors calculated along the crack border.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In practice, actual flaws in three-dimensional structures are often approximated by a flat shape crack.

Also, the flat crack problem belongs to a particular problem of the three-dimensional elasticity; and the

relevant analysis possesses some difficulty. For this reason, the flat crack problem has been paid consi-

derable attention to Sneddon and Lowengrub (1969) and Kassir and Sih (1975).

For the flat crack case, the hypersingular integral equations were formulated by many researchers

(Bueckner, 1977; Ioakimidis, 1982; Lin�kov and Mogilevskaya, 1986). In the formulation, the integral
should be understood in the sense of the finite part integral (Hadamards, 1923; Kaya and Erdogan, 1987).

Since the hypersingular integral should be defined in a rigorous manner, one should investigate an ap-

propriate integral rule in derivation and computation. Generally, the solution is more difficult by using this

method. Also, the relevant differential–integral equations for the flat crack problem were suggested
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(Ioakimidis, 1982; Fabrikant, 1987; Chen et al., 1996, 1997). Because of the involved differential operator, it

is not easy to use the equation for solving the problem numerically.

On the other hand, instead of using the differential or integral equation the variational principle in

elasticity is an effect way to solve the elasticity problem. For the plane elasticity crack problem, the vari-
ational principle is used to solve the crack problem of a finite plate (Chen, 1983). Recently, a variational

boundary integral method is developed for the analysis of three-dimensional cracks (Xu, 2000). The method

is based on modeling the crack as a continuous distribution of dislocation loops.

In this paper, it is found that the conjunction of the variational principle and the differential–integral

equation in flat crack problem is an effective way in this field. In the formulation, the strain energy is

evaluated by multiplying the crack opening displacement (COD) by the boundary traction. The boundary

traction is related to the COD function by a differential–integral representation. By using an integration by

part, the portion of the strain energy of the potential functional can be expressed by a repeated integral. In
the integral all the integrated functions are non-singular. Letting the functional be minimum, the solution is

obtained. In the actual solution, the COD function is represented by a shape function family in which

several undetermined coefficients are involved. Using the variational principle, the coefficients are obtained.

In this paper, several flat crack problems are present with the calculated results. The problems include: (a)

an elliptic crack (b) the interaction of two elliptic cracks and (c) a rectangular crack. The obtained results

are compared with the previous solutions.

It is well known that it is not easy to use the standard finite method to the case of an infinite body.

Secondly, if the hypersingular integral boundary element method is used, there are some difficult points.
For example, the shape functions should take different forms for the inner element and the near boundary

element. This will make the solution more difficult.

2. Analysis

Let us consider a region S that represents the flat crack (Fig. 1). Assume that the tractions applied on the

upper and the lower crack faces are the same in magnitude and opposite in direction. The results to evaluate
the traction from the COD function W ðx; yÞ are as follows (Chen et al., 1996)

rz ¼
1

H
D0

Z Z
S

1

r
W ðx; yÞdxdy ð1Þ

rz ¼
1

H
v:f :

Z Z
S

1

r3
W ðx; yÞdxdy ð2Þ

where S denotes the region occupied by the flat crack, and

r2 ¼ ðx� x0Þ2 þ ðy � y0Þ2; D0 ¼
o2

ox20
þ o2

oy20
; H ¼ 2pð1� mÞ

G
ð3Þ

with G being the shear modulus of elasticity, and m being the Poisson�s ratio. In Eq. (2) v.f. means that the
integral should be understood in the sense of the finite part integral.

Let the boundary condition take the form

rz ¼ rz ¼ �qQðx0; y0Þ; ðx0; y0Þ 2 S ð4Þ

where q is a constant traction. From Eqs. (1) and (4), the following differential–integral equation is ob-

tained,
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D0

Z Z
S

1

r
W ðx; yÞdxdy ¼ �HqQðx0; y0Þ ð5Þ

Alternatively, From Eqs. (2) and (4), the following hypersingular integral equation is obtained,

v:f :

Z Z
S

1

r3
W ðx; yÞdxdy ¼ �HqQðx0; y0Þ ð6Þ

Fig. 1. (a) An elliptical crack, (b) two elliptical cracks in parallel position, (c) two elliptical cracks in series, (d) two cracks with one fixed

and other in rotation position and (e) a flat rectangular crack.
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In the following analysis, the least potential energy principle is used to find a final solution. It is known

that in the present case the potential functional takes the form,

P ¼ P1 þ P2 ð7Þ

P1 ¼
1

2

Z Z
S

ð�rzÞW ðx0; y0Þdx0 dy0 ð8Þ

P2 ¼ �
Z Z
S

ð�rzÞW ðx0; y0Þdx0 dy0 ¼ �q
Z Z
S

Qðx0; y0ÞW ðx0; y0Þdx0 dy0 ð9Þ

where P1 is equal to the potential energy stored in body, and P2 is the potential energy from the applied

loading. Since the normal for the upper crack face is always directed towards down, the minus ()) is placed
before rz or rz.
From above equations we see that the evaluation of the integral P2 is straightforward. For the integral

P1, there are two ways to substitute the component rz. One is to use Eq. (1) and the other is to use Eq. (2).

The following derivation will prove that the former has a particular advantage. Clearly, after using Eq. (1)

we prefer to write the P1 in the form,

P1 ¼
1

2H
ðP1x þ P1yÞ ð10Þ

P1x ¼ �
Z Z
S

W ðx0; y0Þ
o2

ox20

Z Z
S

1

r
W ðx; yÞdxdy

8<
:

9=
;dx0 dy0 ð11Þ

P1y ¼ �
Z Z
S

W ðx0; y0Þ
o2

oy20

Z Z
S

1

r
W ðx; yÞdxdy

8<
:

9=
;dx0 dy0 ð12Þ

In the following derivation we will change the form of P1x and P1y to make these integrals in a more
convenient fashion for computation. For convenience, in derivation P1x is rewritten in the form,

P1x ¼ �
Z Z
S

W ðx0; y0Þ
ogðx0; y0Þ

ox0
dx0 dy0 ð13aÞ

gðx0; y0Þ ¼
o

ox0

Z Z
S

1

r
W ðx; yÞdxdy ð13bÞ

Clearly, from Eq. (3) we have the following equalities,

o

ox0

1

r

� 	
¼ � o

ox
1

r

� 	
;

o

oy0

1

r

� 	
¼ � o

oy
1

r

� 	
ð14Þ

In addition, considering that the function W ðx; yÞ vanishes along the crack boundary and performing an
integration by part, Eqs. (13a) and (13b) becomes in the form,

P1x ¼
Z Z
S

oW ðx0; y0Þ
ox0

gðx0; y0Þdx0 dy0 ð15aÞ
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gðx0; y0Þ ¼ �
Z Z
S

o

ox
1

r

� 	
W ðx; yÞdxdy ¼

Z Z
S

oW ðx; yÞ
ox

1

r

� 	
dxdy ð15bÞ

Finally, we have

P1x ¼
Z Z
S

oW ðx0; y0Þ
ox0

Z Z
S

oW ðx; yÞ
ox

1

r
dxdy

8<
:

9=
;dx0 dy0 ð16Þ

Similarly,

P1y ¼
Z Z
S

oW ðx0; y0Þ
oy0

Z Z
S

oW ðx; yÞ
oy

1

r
dxdy

8<
:

9=
;dx0 dy0 ð17Þ

From general analysis in fracture mechanics, we see that the COD function W ðx; yÞ at the point D has an
estimation Oðd1=2Þ (Fig. 1(a)), where d ¼ DE is the distance from a point ‘‘D’’ to the crack border point
‘‘E’’ along the normal of contour. This means that owðx; yÞ=ox and owðx; yÞ=oy at the point ‘‘D’’ have an
estimation Oðd�1=2Þ. Also, if we use the polar coordinate ðs; hÞ with center at the point ðx0; y0Þ, the term
dxdy=r is changed into dsdh. Therefore, there is no singular integral involved in Eqs. (16) and (17).
In the solution, we may assume the COD function in the form of a shape function family,

W ðx; yÞ ¼
XM
j¼1

XjWjðx; yÞ ð18Þ

where the Wjðx; yÞ ðj ¼ 1; 2; . . . ;MÞ are the COD shape functions, which can be assumed for individual case,
and Xj ðj ¼ 1; 2; . . . ;MÞ are the undetermined coefficients.
Substituting Eq. (18) into Eqs. (9), (10), (16) and (17), the potential functional can be expressed as

P ¼ 1
2

XM
j¼1

XM
k¼1

AjkXjXk �
XM
j¼1

RjXj ð19Þ

where

Ajk ¼ Akj ¼
1

H

Z Z
S

oWjðx0; y0Þ
ox0

Z Z
S

oWkðx; yÞ
ox

1

r
dxdy

8<
:

9=
;dx0 dy0

þ 1

H

Z Z
S

oWjðx0; y0Þ
oy0

Z Z
S

oWkðx; yÞ
oy

1

r
dxdy

8<
:

9=
;dx0 dy0 ðj; k ¼ 1; 2; . . . ;MÞ ð20Þ

Rj ¼
Z Z
S

Qðx; yÞWjðx; yÞdxdy ðj ¼ 1; 2; . . . ;MÞ ð21Þ

From the following condition

oP
oXj

¼ 0 ðj ¼ 1; 2; . . . ;MÞ ð22Þ
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we obtain the the following algebraic equation,

XM
k¼1

AjkXk ¼ Rj ðj ¼ 1; 2; . . . ;MÞ ð23Þ

In Eq. (20) the relation Ajk ¼ Akj can be easily proved by the Betti�s reciprocal theorem in elasticity. After
the solution for the COD function W ðx; yÞ is obtained, the stress intensity factor can be evaluated by (Chen
et al., 1996)

K1 ¼
p

ffiffiffiffiffiffi
2p

p

H
lim
d!0

d�1=2W ðx; yÞ ð24Þ

In case of two elliptical cracks, similar formulation can be completed (Fig. 1(b)). Assume that the two

cracks have the same configuration. Thus, the same COD shape function can be used for two cracks. In

addition to evaluate the elements Ajk of the matrix A, a matrix B with the elements Bjk is evaluated. The

element Bjk is defined as

Bjk ¼ Bkj ¼
1

H

Z Z
S1

oWjðx0; y0Þ
ox0

Z Z
S2

oWkðx; yÞ
ox

1

r
dxdy

8<
:

9=
;dx0 dy0

þ 1

H

Z Z
S1

oWjðx0; yoÞ
oy0

Z Z
S2

oWkðx; yÞ
oy

1

r
dxdy

8<
:

9=
;dx0 dy0 ðj; k ¼ 1; 2; . . . ;MÞ ð25Þ

where S1 and S2 denote the first and second cracks, respectively and

r2 ¼ ðxþ xd � x0Þ2 þ ðy þ yd � y0Þ2 ð26Þ

The notations x, xd , x0, y, yd and y0 are indicated in Fig. 1(b). Physically, the matrix B with the elements Bjk

represents the mutual influence between two cracks. This can be seen from following results. In the repeat

integral shown by Eq. (25), the function Wjðx0; y0Þ; ðx0; y0Þ 2 S1 denotes the jth COD shape function defined
for the crack in S1, and the function Wkðx; yÞ; ðx; yÞ 2 S2 denotes the kth COD shape function defined for
the crack in S2. Therefore, the component Bjk can be considered as an influence of jth COD shape function

defined for the crack in S1 on the kth COD shape function defined for the crack in S2.
The algebraic equation for case of two cracks is formulated immediately in the form,

A B

Bs A

����
���� X1X2
����

���� ¼ R1
R2

����
���� ð27Þ

where Bs denotes a matrix which is symmetry with respect to the matrix B, X1 and X2 are two unknown

vectors for two cracks which are involved in the COD shape functions. R1 and R2 are two vectors for two

cracks which are derived from the given loading. After the solutions for the unknown vectors X1 and X2 are

obtained, the COD function is also evaluated from Eq. (18). Furthermore, the SIF can be obtained by using

Eq. (24).

3. Solution technique and numerical examples

To prove the efficiency of the suggested formulation, several numerical examples are given below. Some
particular points in computation are also described in the examples. In all examples, the crack face is loaded

by a constant pressure q, or rz ¼ �rrz ¼ �q in Eq. (4).
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Example 3.1

As the first example, a flat crack is under consideration (Fig. 1(a)). By using the differential–integral

equation method, the problem has a closed form solution in the form (Chen et al., 1996),

W ðx; yÞ ¼ Hqb
2pEðkÞ 1



� x

a

� �2
� y

b

� �2�1=2
ð28Þ

where

k ¼ ð1� ðb=aÞ2Þ1=2 ð29Þ

a and b are major and minor axis in ellipse, respectively. EðkÞ denotes the complete elliptical integral of
second kind.

In the numerical solution, we choose

W ðx; yÞ ¼ Hbq
2pEðkÞ 1

�
� x

a

� �2
� y

b

� �2	1=2
c1



þ c2

x
a

� �2
þ c3

y
b

� �2
þ c4

x
a

� �4
þ c5

x
a

� �2 y
b

� �2
þ c6

y
b

� �4�

ð30Þ

In the numerical integration of the integral shown in Eq. (20), the following procedures are used. We

take one integral in Eq. (20) as an example, which may be rewritten in the following form,

Iðx0; y0Þ ¼
Z Z
S

oWkðx; yÞ
ox

1

r
dxdy ð31aÞ

g ¼
Z Z
S

oWjðx0; y0Þ
ox0

Iðx0; y0Þdx0 dy0 ð31bÞ

For evaluating the integral Iðx0; y0Þ which depends on the location of the point ðx0; y0Þ, it is suitable to
perform the integration in a particular polar coordinate ðs; hÞ with the center at the point ðx0; y0Þ. Therefore,
the component dxdy=r is changed into dsdh. In s-direction, the Gaussian quadrature rule with 20 divisions
is used. In h-direction, the Simpson quadrature rule with 40 divisions is used. For evaluating the integral
shown in Eq. (31b), the first step is to perform integration in y0-direction with a fixed x0 value, and the next
step is in x0-direction. In both steps, the Gaussian quadrature rule with 50 divisions is used.
For nine k values of 0; sinðp=18Þ; . . . ; sinð8p=18Þ, the solutions obtained for the coefficients ci in Eq. (30)

are listed in Table 1.

From the results, we see that the deviation of the numerical solution from the exact solution (c1 ¼ 1, ci ¼
0; i ¼ 2; 3; 4; 5; 6) is negligible.

Table 1

The calculated coefficients ci ði ¼ 1; 2; . . . ; 6Þ in Eq. (30)
k b=a c1 c2 c3 c4 c5 c6

0 1.0000 0.9997 0.0028 0.0000 )0.0070 0.0028 )0.0002
sinðp=18Þ 0.9848 0.9997 0.0028 0.0000 )0.0070 0.0028 )0.0002
sinð2p=18Þ 0.9397 0.9997 0.0028 0.0000 )0.0069 0.0026 )0.0002
sinð3p=18Þ 0.8660 0.9997 0.0028 0.0000 )0.0068 0.0024 )0.0001
sinð4p=18Þ 0.7660 0.9998 0.0028 0.0000 )0.0066 0.0021 )0.0001
sinð5p=18Þ 0.6428 0.9998 0.0027 )0.0001 )0.0062 0.0016 0.0000

sinð6p=18Þ 0.5000 0.9998 0.0025 )0.0001 )0.0056 0.0011 0.0000

sinð7p=18Þ 0.3420 0.9998 0.0021 0.0000 )0.0045 0.0005 0.0000

sinð8p=18Þ 0.1736 1.0019 0.0013 0.0001 )0.0025 0.0002 )0.0001
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Example 3.2

As the second example, two cracks with the elliptical configuration are in parallel (Fig. 1(c)). Considering

the symmetry condition with respect to the x-coordinate, the COD shape function may be assumed in the

form,

W ðx; yÞ ¼ 1

�
� x

a

� �2
� y

b

� �2	1=2
c1



þ c2

y
b

� �
þ c3

x
a

� �2
þ c4

y
b

� �2
þ c5

x
a

� �2 y
b

� �
þ c6

y
b

� �3

þ c7
x
a

� �4
þ c8

x
a

� �2 y
b

� �2
þ c9

y
b

� �4
þ c10

x
a

� �4 y
b

� �
þ c11

x
a

� �2 y
b

� �3
þ c12

y
b

� �5

þ c13
x
a

� �6
þ c14

x
a

� �4 y
b

� �2
þ c15

x
a

� �2 y
b

� �4
þ c16

y
b

� �6�
ð32Þ

The above-mentioned computation conditions are used in the present case. Two sets of numerical example

are carried out. In the first set of the example, we choose b=a ¼ 0:25, 0.5, 0.75 and 1, and d=b ¼ 2=9, 0.5, 1.2
and 2.0. The calculated results at the point H are expressed by

K1 ¼ f ðb=a; d=bÞqF ða; b; p=2Þ ð33aÞ

F ða; b;/Þ ¼ 1

EðkÞ

ffiffiffiffiffiffi
pb
a

r
ða2 sin2 / þ b2 cos2 /Þ1=4 ð33bÞ

where the function f ðb=a; d=bÞ represents the magnified factor of SIF. The value qF ða; b;/) represents the
stress intensity factor at a border point ðx ¼ a cos/; y ¼ sin/Þ of a single elliptical crack under uniform
loading q.

The calculated results are listed in Table 2. Comparison of the results are also listed in Table 2. Coin-
cidence with various sources of solutions has been found from Table 2.

In the second set of the example, we choose b=a ¼ 0:25, 0.5, 0.75 and 1, and d=b ¼ 0:1, 0.2, 0.5 and 1.0.
The calculated results for the point (x ¼ a cos/; b ¼ b sin/) along the curve GH are expressed by

K1 ¼ gðb=a; d=b;/ÞqF ða; b;/Þ ð34Þ

where the function gðb=a; d=b;/Þ represents the magnified factor of SIF. The calculated results are shown
in Fig. 2.

Example 3.3
As the third example, the lower crack is in a fixed position and the upper crack is subject to rotation, and

the two cracks have the same elliptical configuration (Fig. 1(d)). In the case, we need to assume the fol-

lowing COD function,

Table 2

The calculated non-dimensional SIFs f ðb=a; d=bÞ (see Fig. 1(c) and Eqs. (33a) and (33b))
b=a 2b=ðd þ 2bÞ

0.9 (2/9) 0.8 (0.50) 0.625 (1.20) 0.5 (2.00)

0.25 1.3550 1.1719 1.0598 1.0272

0.25 (Murakami, 1987) 1.181 1.063 1.028

0.50 1.2555 1.1174 1.0365 1.0153

0.50 (Murakami, 1987) 1.126 1.038 1.016

0.75 1.1954 1.0851 1.0246 1.0100

1.00 1.1538 1.0642 1.0178 1.0071

1.00 (Murakami, 1987) 1.068 1.018 1.007

Values in parentheses denote d=b.
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W ðx; yÞ ¼ 1

�
� x

a

� �2
� y

b

� �2	1=2
c1



þ c2

x
a

� �
þ c3

y
b

� �
þ c4

x
a

� �2
þ c5

x
a

� � y
b

� �
þ c6

y
b

� �2

þ c7
x
a

� �3
þ c8

x
a

� �2 y
b

� �
þ c9

x
a

� � y
b

� �2
þ c10

y
b

� �3
þ c11

x
a

� �4
þ c12

x
a

� �3 y
b

� �

þ c13
x
a

� �2 y
b

� �2
þ c14

x
a

� � y
b

� �3
þ c15

y
b

� �4�
ð35Þ

In the example, we choose b=a ¼ 0:5 and d=b ¼ 0:2 and the distance between centers of two cracks are
assumed to be h ¼ aþ bþ d. The inclined angle a of the upper crack is subject to change.
In this case, the calculated results for SIF at the boundary point (x ¼ a cos/; b ¼ b sin/) can be ex-

pressed as

K1 ¼ h1ða;/ÞqF ða; b;/Þ ðfor the upper crackÞ ð36Þ

K1 ¼ h2ða;/ÞqF ða; b;/Þ ðfor the lower crackÞ ð37Þ

where the functions h1ða;/Þ and h2ða;/Þ represents the magnified factor of SIF. The calculated results for
three cases a ¼ 0, a ¼ 5p=12 and a ¼ p=2 are shown in Fig. 3. For a ¼ 0, a ¼ 2:0, b ¼ 1:0 and d ¼ 0:2, the
gap spacing is 1.2 ð¼ aþ bþ d � 2bÞ. In this case, the interaction effect is comparatively small. On con-
trary, for the a ¼ p=2, a ¼ 2:0, b ¼ 1:0 and d ¼ 0:2, the gap spacing becomes 0.2 ð¼ aþ bþ d � a� bÞ. In
this case, the interaction effect becomes larger. For example, for the upper crack, h1ða;/Þ value reaches its
maximum 1.2381 at the angle / ¼ 180�. Similarly, for the lower crack h2ða;/Þ value reaches its maximum
1.1168 at the angle / ¼ 90�.

Example 3.4
As the fourth example, the crack has a rectangular configuration (Fig. 1(e)). In the case, we need to

assume the following COD function in the form,

W ðx; yÞ ¼ 1

�
� x

a

� �2	1=2
1

�
� y

b

� �2	1=2
c1



þ c2

x
a

� �2
þ c3

y
b

� �2
þ c4

x
a

� �4
þ c5

x
a

� �2 y
b

� �2
þ c6

y
b

� �4�

ð38Þ

In computation, similar conditions are used in the present case. In the example, we choose a=b ¼ 1; 2 and
4. The calculated results for SIF are expressed by

Fig. 2. Non-dimensional SIFs gðb=a; d=a;/Þ for two elliptical cracks in series (a) b=a ¼ 0:25 and 0.50, (b) b=a ¼ 0:75 and 1.00.
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K1 ¼ f ða=b; x=aÞq
ffiffiffiffiffiffi
pb

p
ðalong the upper edge EF in Fig: 1ðeÞÞ ð39Þ

K1 ¼ gða=b; y=bÞq
ffiffiffiffiffiffi
pb

p
ðalong the left edge GF in Fig: 1ðeÞÞ ð40Þ

where the function f ða=b; x=aÞ and gða=b; y=bÞ represents the magnified factor of SIF. The calculated re-
sults are shown in Table 3 and Fig. 4. The results can be examined from the following consideration.

Clearly, in the long strip case (a=b ! 1), the f ða=b; x=aÞ at the point E (x=a ¼ 0) should be equal to 1. In
the present example, when a=b ¼ 4, the relevant value of the function f ðb=a; x=aÞ at x=a ¼ 0 is 0.9636.
Secondly, in the a=b ¼ 1 case, the previous result for f ðb=a; x=aÞ at x=a ¼ 0 is 0.76 (Murakami, 1987). In the
present case, the relevant calculated value is 0.7616. Thus, the validity of computation is obtained indi-

rectly.

Fig. 3. Non-dimensional SIFs h1ða;/Þ and h2ða;/Þ for two elliptical cracks with one fixed and other in rotation position (see Fig. 1(d)
and Eqs. (36) and (37)).

Table 3

The calculated non-dimensional SIFs f ða=b; x=aÞ and gða=b; y=bÞ for the rectangular flat crack (see Fig. 1(e) and Eqs. (39) and (40))
a=b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A

1 0.7616 0.7602 0.7557 0.7475 0.7341 0.7135 0.6820 0.6337 0.5573 0.4261

2 0.9122 0.9113 0.9085 0.9029 0.8929 0.8757 0.8467 0.7978 0.7132 0.5557

4 0.9636 0.9634 0.9626 0.9612 0.9586 0.9530 0.9403 0.9107 0.8437 0.6863

Panel B

1 0.7616 0.7602 0.7557 0.7475 0.7341 0.7135 0.6820 0.6337 0.5573 0.4261

2 0.8179 0.8151 0.8067 0.7921 0.7700 0.7389 0.6956 0.6352 0.5480 0.4103

4 0.8283 0.8248 0.8143 0.7961 0.7692 0.7321 0.6822 0.6152 0.5227 0.3845

Panel A: x=a ¼ 0; 0:1; . . . ; 0:9; Panel B: y=b ¼ 0; 0:1; . . . ; 0:9.
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4. Conclusions and discussions

In the present study, a variational principle in conjunction with the differential–integral equation is used
to solve the flat crack problem. There is no singular integral involved in the formulation, which is a par-

ticular advantage of the suggested method. Also, the method can be used to the shear mode case in a flat

crack problem. Meantime, on the base of the present formulation, the boundary element technique can also

be developed to solve the flat crack problem. The mentioned extension will be investigated in a future study.
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